Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 173: 105803, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171388

RESUMEN

Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-ß-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.


Asunto(s)
Acetatos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Phyllanthus , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1 , Ratas Wistar , Estructura Molecular , Fibras Musculares Esqueléticas , Insulina/metabolismo , Palmitatos/metabolismo , Músculo Esquelético/metabolismo
2.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37534494

RESUMEN

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Asunto(s)
Síndrome Metabólico , Ratas , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Glucemia/análisis , Glucemia/metabolismo , Lysimachia , Fructosa , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fenotipo , Aminoácidos/metabolismo , Progresión de la Enfermedad , Candida/metabolismo
3.
J Ethnopharmacol ; 303: 115936, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403743

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY: The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS: Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS: Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION: The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Ratas , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratas Wistar , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/metabolismo , Glucósidos/farmacología , Glucósidos/uso terapéutico , Glucósidos/metabolismo , Simulación del Acoplamiento Molecular , Hepatocitos , Glucosa/metabolismo , Hígado
4.
Phytother Res ; 35(12): 6990-7003, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34734439

RESUMEN

Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.


Asunto(s)
Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad , Quempferoles/farmacología , Extractos Vegetales/farmacología , Primulaceae , Transducción de Señal/efectos de los fármacos , Células 3T3-L1 , Adipocitos , Animales , Fármacos Antiobesidad/farmacología , Diferenciación Celular , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Primulaceae/química , Ratas , Ratas Wistar , Proteínas de Unión a Tacrolimus/metabolismo
5.
Phytomedicine ; 93: 153761, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34715512

RESUMEN

BACKGROUND: Premna herbacea Roxb., a perennial herb is well documented for its therapeutic uses among the traditional health care-givers of Assam, India. Scientific validation on the traditional use of the medicinal plant using modern technology may promote further research in health care. PURPOSE: This study evaluates the therapeutic potential of methanolic extract of P. herbacea (MEPH) against type 2 diabetes mellitus (T2DM) and its phytochemical(s) in ameliorating insulin resistance (IR), thereby endorsing the plant bioactives as effective anti-hyperglycemic agents. METHODS: The anti-diabetic potential of the plant extract was explored both in L6 muscle cells and high fructose high fat diet (HF-HFD) fed male Sprague Dawley (SD) rats. Bioactivity guided fractionation and isolation procedure yielded Verbascoside and Isoverbascoside (ISOVER) as bioactive and major phytochemicals in P. herbacea. The bioenergetics profile of bioactive ISOVER and its anti-hyperglycemic potential was validated in vitro by XFe24 analyzer, glucose uptake assay and intracellular ROS generation by flourometer, FACS and confocal microscopy. The potential of ISOVER was also checked by screening various protein markers via immunoblotting. RESULTS: MEPH enhanced glucose uptake in FFA-induced insulin resistant (IR) L6 muscle cells and decreased elevated blood glucose levels in HF-HFD fed rats. Isoverbascoside (ISOVER) was identified as most bioactive phytochemical for the first time from the plant in the Premna genus. ISOVER activated the protein kinase B/AMP-activated protein kinase signaling cascades and enhanced glucose uptake in IR-L6 muscle cells. ISOVER decreased the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) and increased that of mammalian target of rapamycin (mTOR), thereby attenuating IR. However, molecular docking revealed that ISOVER increases insulin sensitivity by targeting the JNK1 kinase as a competitive inhibitor rather than mTOR. These findings were further supported by the bioenergetics profile of ISOVER. CONCLUSION: This study for the first time depicts the functional properties of ISOVER, derived from Premna herbacea, in ameliorating IR. The phytochemical significantly altered IR with enhanced glucose uptake and inhibition of ROS through JNK-AKT/mTOR signaling which may pave the way for further research in T2DM therapeutics.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Metabolismo Energético , Glucosa , Glucósidos , Insulina/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Células Musculares/metabolismo , Fenoles , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo
6.
Front Pharmacol ; 12: 653872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935766

RESUMEN

Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA